石川工業高等専門学校		開講年度	平成31年度 (2019年度)		授業科目	電気回路 I		
科目基礎情報								
科目番号	16350			科目区分	受分 専門 / 必修			
授業形態	講義			単位の種別と単位数	数 履修単位	履修単位: 2		
開設学科	電気工学科			対象学年	対象学年 3			
開設期	通年			週時間数	2	2		
教科書/教材	教科書: 西巻正郎「電気回路の基礎(第3版)」(森北出版) 教材等: プリント、上原正啓「電気回路 (ドリルと演習シリーズ)」(電気書院) 参考書: 大野克郎、西哲生共「大学課程 電気回路(1)」など							
担当教員	河合 康典							
到接口煙								

- 1.交流の直列回路と並列回路の計算ができる。
 2.交流回路の直並列回路と電力の計算ができる。
 3.周波数特性を理解し、ベクトル軌跡を作図できる。
 4.キルヒホッフの法則を理解し、交流回路網の計算ができる。
 5.回路網理論を理解し、交流回路網の計算ができる。
 6.デブナンの定理を応用し、交流回路網の計算ができる。
 7.ブリッジの回路の計算ができる。
 8.相互誘導回路の計算ができる。
 9.共振回路の計算ができる。
 10.ひずみ波交流回路の計算ができる。
 11.三相交流を理解し、三相交流回路の計算ができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
到達目標	交流回路の基礎の理解と応用的な	交流回路の基礎の理解ができ、基本的な問題を解くことができる	交流回路の理解ができておらず、
項目1,2	問題を解くことができる		問題が解けない
到達目標 項目3	周波数特性とベクトル軌跡につい て理解し,応用的な問題を解くこ とができる	周波数特性とベクトル軌跡につい て理解し,基本的な問題を解くこ とができる	周波数特性とベクトル軌跡につい て理解しておらず、問題が解けな い
到達目標	各種理論を理解し、応用問題を解	各種理論を理解し、基本的な問題	各種理論を理解しておらず、問題
項目4,5,6	くことができる	を解くことができる	が解けない
到達目標	ブリッジの回路の理解と応用的な	ブリッジの回路の理解と基本的な	ブリッジの回路の理解ができてお
項目7	問題を解くことができる	問題を解くことができる	らず、問題が解けない
到達目標項目8	相互誘導回路の理解と応用的な問	相互誘導回路の理解と基本的な問	相互誘導回路の理解ができておら
	題を解くことができる	題を解くことができる	ず、問題が解けない
到達目標	共振回路の理解と応用的な問題を	共振回路の理解と基本的な問題を	共振回路の理解ができておらず、
項目9	解くことができる	解くことができる	問題が解けない
到達目標	ひずみ波交流回路を理解し,応用	ひずみ波交流回路を理解し,基本	ひずみ波交流回路について理解し
項目10	的な問題を解くことができる	的な問題を解くことができる	ておらず、問題が解けない
到達目標	三相交流を理解し,応用的な問題	三相交流を理解し,基本的な問題	三相交流について理解しておらず
項目11	を解くことができる	を解くことができる	、問題が解けない

学科の到達目標項目との関係

本科学習目標 1, 本科学習目標 2

教育方法等

概要	電気回路の現象や特性などの基本的概念を学び,電気回路の基礎学力と専門知識を修得する。また,電気回路に関する 諸定理を学習し,これらを用いた回路解析の演習問題を通して課題解決の手法を修得する。				
授業の進め方と授業内 容・方法	演習を中心に授業を進める 【事前事後学習など】適宜,講義内容の復習のためにレポート課題を与える。 【関連科目】電気数学,電気工学基礎 I , 回路基礎,電気工学基礎 II , 電子回路 I				
注意点	応用力を身に付けるには、できるだけたくさんの演習問題を解くことが大切です。電卓,レポート用紙を必ず持参すること。 課題のレポートは必ず提出すること。 【評価方法・評価基準】 中間試験,期未試験,学年未試験を実施する。 前期末:中間試験(40%),期末試験(40%),小テスト(20%) 学年末:後期中間試験(40%),学年末試験(40%),小テスト(20%)で後期の成績を計算し、前期と後期の成績の平均を学年末の成績とする。 成績の評価基準として50点以上を合格とする。				

授業計画

[1又未] 四	4					
	週	授業内容・方法	週ごとの到達目標			
	1週	交流回路の復習	フェーザ表示と時間軸表示について理解できる			
	2週	交流の直列回路	交流の直列回路の説明と計算ができる			
	3週	交流の並列回路	交流の並列回路の説明と計算ができる			
	4週	交流の直並列回路	交流の直並列回路の説明と計算ができる			
	5週	交流回路の周波数特性	抵抗、コイル、コンデンサの周波数特性、ベクトル軌跡が 理解、説明できる			
前期	6週	交流回路のベクトル軌跡	交流回路の周波数特性、ベクトル軌跡が理解、説明できる			
	7週	キルヒホッフの法則	交流のキルヒホッフの法則の説明と計算ができる			
	8週	網目電流法	網目電流法の説明と計算ができる			
	9週	節点解析法	節点解析法の説明と計算ができる			
	10週	回路法則の基礎(重ね合わせの理)	重ね合わせの理が理解が理解、計算できる			
	11週	回路法則の基礎(テブナンの定理)	テブナンの定理が理解、計算できる			
	12週	回路法則の基礎 (ノートン, ミルマンの定理)	ノートンの定理, ミルマンの定理が理解、計算できる			
	13週	回路法則の基礎(相反の定理,補償の定理)	相反の定理, 補償の定理が理解、計算できる			

	14週		共振回路				共振	共振回路の共振周波数について説明と計算できる				
	15週		前期復習				共振は期のは	共振回路の増幅作用やQ値について理解できる。また、前 期の内容が理解できる。				
	16週											
後期	1週		電磁誘導結合回路				電磁	誘導結合回路の説明	明と計算ができ	る		
	2週		電磁誘導結合回路				電磁	電磁誘導結合回路の説明と計算ができる				
	3週		理想変圧器					理想変圧器について説明と計算ができる				
	4週		直列共振					直列共振について説明と計算ができる				
	5週		並列共振				並列:	共振について説明。	と計算ができる			
	6週		フーリエ級数とひずみ波交流				フーる	フーリエ級数とひずみ波交流についての説明と計算ができる				
	7週		フーリエ級				フーる	フーリエ級数とひずみ波交流についての説明と計算ができ る				
	8週		フーリエ級数とひずみ波交流				フーる	フーリエ級数とひずみ波交流についての説明と計算ができ る				
	9週		ひずみ波の実効値、波形率・波高値・ひずみ率					ひずみ波の実効値、波形率・波高値・ひずみ率の説明と計 算ができる				
	10週		ひずみ波起電力による電流と電力					ひずみ波起電力による電流と電力についての説明と計算が できる				
	11週		平衡三相交流(Υ-Υ結線, Δ-Δ結線)				平衡	平衡三相Y-Y結線の説明と計算ができる				
	12週		平衡三相交流(Δ – Δ結線)				平衡:	平衡三相Δ – Δ結線の説明と計算ができる				
	13週		非平衡三相交流				非平	非平衡三相交流について説明と計算ができる				
	14週		対称座標法				対称	対称座標法を用いて非平衡電源の説明と計算ができる				
	15週		後期復習				後期	後期内容の理解ができる。				
	16週											
評価割合	<u> </u>											
		試験		発表	相互評価	態度		ポートフォリオ	その他	合計		
総合評価割合		80		0	0	0		0	20	100		
基礎的能力		0		0	0	0		0	0	0		
専門的能力		80		0	0	0		0	20	100		
分野横断的	分野横断的能力 0			0	0	0		0	0	0		